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Received 21 March 1980, in final form 28 November 1980 

Abstract. A certain form for the self-dual solutions of the Yang-Mills-Higgs system is 
tested. (When restricted to spherical symmetry this ansatz is the most general form in the 
Wigner-Eckart sense.) It is found that the only consistent solutions of this form are 
spherically symmetric, and that the only tinite energy solution then is the Prasad-Som- 
merfield solution. 

The Euler--Lagrange equations of the Yang-Mills-Higgs system with no self-inter- 
action (potential) term of the Higgs fields are 

where both the gauge field F,, = d,A, -d,A, + [A,, A,]  and the Higgs field q5 take their 
values in the algebra of the group SU(2). The last member of (1) is the Bianchi identity. 

These equations are solved (Bogomolnyi 1976) by the following self -duality condi- 
tions 

F,, = *EcjkDkd' .  (2) 
While (1) is a second-order system of difierential equations, (2) is only first order and 

hence easier to handle. This is exactly the same situation as that occurring for Instanton 
(Jackiw er a1 1976) solutions of the Yang-Mills field equations. 

Here we seek solutions of (2), of the following form+ 

A = T X V  In @+TA 
q5 = T V In @CL, .r = -?lo-. 

(3a)  

( 3 b )  

Starting from this ansatz, we learn the following about the solutions of the 
self-duality equations (2): 

(i) that solutions of the form ( 3 )  must be spherically symmetric. This conclusion is 
arrived at by starting with the assumption of axial symmetry, that is with 0,  Cl and h 
independent of the azimuthal angle, and then finding that the self-duality equations 
impose further the independence of 0,  

(ii) that the spherically symmetric solution in question is the Prasad-Sommerfield 
(1975) (P-S) solution. 

1 .  

and h of the polar angle, and 

t A mcre special ansatz was considered by Manton (1978) where R = 1 and 1 =constant. 
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Substitution of the ansatz (3) into (2) gives the anti-self-duality equation 

s,,(@-’A@ + V  In 0 * V In O +  .i2) + d ,a ,  In a- a, In Ra, In 0 - ~ , , k h a k R h  = 0.  (4‘) 

Our procedure is to let the functions 0, SZ ,  A depend on the two axial variables 
p = r sin 0 and z = r cos 0, and be independent of the azimuthal cp variable. We then 
show that the only possible solutions of (4) are those where 0, R, A depend on the 
variable r = (p’  + z ’ ) ’ ’ ~  only, that is only spherically symmetric solutions. 

Contracting (4) with &[,k, we find that A = const. a-’, and calling this constant k ,  (4’) 
becomes 

&,(@-‘A0 + V  In 0 . V In Cl+ k2a-’) + a l a ,  In 0- a, In 0 8 ,  In 0 = 0, (4) 

which in terms of the following two functions 

X P ( P 9  2 )  = (a/@) In a, xZ(p, z )  = ( a / a z )  In a 
results in the following equations 

(@-‘A@+ k2n- ’ )+xz (a /az )  In O+&y,(d/dp) In p @ + t ( a / a p ) x P  = 0, 

( @ - ‘ ~ @ + k ~ a ~ ) + ( a / a z ) x ,  +x, (d /dp)  In o = 0 ,  

(4.1) 

(4.2) 

(slap) ln (x , lp@) = 07 (slap) l n ( x J 0 )  = 0 ,  (a /az )  ln(x,/@) = 0 ,  (4.3-4.5) 

( x p ( a l a z ) - x Z ( d l a p ) )  In @ = O .  (4.6) 

From (4.3-4.5) respectively, it follows that 

xp = c l f l ( z ) P @ ,  x2 = C’f’(Z)@, X P  = C 3 f 3 ( P ) @  (5.3-5.5) 

where f l ( z ) ,  f 2 ( z )  and f 3 ( p )  are arbitrary functions, and c1, c2 and c3 are arbitrary 
constants of integration. Comparing (5.3) and (5.5) we find that 

fl(2 = (c3 / c 1 ) p  - I f 3  ( p  ) 

meaning that f l ( z )  is equal to a constant, say c. Then 

( a / a p )  In 0 = x p  = clcp@ = up@. (6.1) 

Substituting (5.4) and (6.1) into (4.1) and (4.2), and subtracting the last two we get a 
simple equation for f 2 ( z ) ,  which is then integrated4 

Using (6.1) and (6.2), the remaining equations (4.1) and (4.6) give 

A @ +  k 2 K 2 @  +;bz(a@’/az) +;ap(a@’/dp) + a0’ = 0 

b z ( a @ / a p )  - ap(a@/dz )  = 0 ,  

(7) 

(8) 

t We have put the integration constant c4 in f2(z) = bz 7 c4 equal to zero. The only effect of leaving this 
constant non-zero is to give the same solutions, with respect to an origin translated by a distance (c4/h)  along 
the z axis. 
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and by repeated use of (8), (7) can be written in the following two equivalent forms 

( a / a z ) [ ( z 2 + a 2 p 2 / b 2 ) 2 - 1 ( a o / a z ) + ( 2 a / b  - 1)0 

+ t ( z 2  + a 2 p 2 / b 2 ) b e 2  - i k 2 ~ - 2 ]  + ( a  - b ) z o 2  = o (7.1) 

(a /dp) [ (p2 + b2z2 /a2 )p - ' (a@/ap)  + b O / a  + k ( p 2  + b 2 z 2 / a 2 ) a 0 2  - i k , 2 X 2 ]  = 0.  

We next notice that the constraint (8) can be thought of as 

(7.2) 

where s is a variable defined in terms of p and 2. This implies that 0 is independent of s, 
and it is easy to see that it then depends only on the variable 

t = (up2 + bz2)1!2, 

which defines ellipsoidal surfaces on which 0 does not change for given t, and hence 
such solutions, if they exist, will be axially symmetric. 

b(d/dt)[ t6+(2a/b - 1)O+$t202-ik2R-2]  

This restriction now leads to the following form of (7.1) and (7.2) 

+ ( U  - b ) ~ p ~ ( d / d t ) [ t - * 6 + + @ ~ ] + ( ~  - b ) t 0 2 = 0  (7.1') 

a ( d / d t ) [ t b + b O / ~  + i t 2 0 2 - i k 2 R - 2 ] - ( ~  - b ) b z 2 ( d / d t ) [ t ~ ' b + i O 2 ] = 0 .  (7.2') 

In (7.1', 2') the function R is also taken to depend only on t, which follows from (6.1, 2). 
We now subtract (7.2') from (7.1') and find that either k 2  = 0 or dR/dt  = 0, which 

means that either A in ( 3 a )  vanishes, or R in ( 3 b )  is a constant. The second possibility is 
the one investigated by Manton (1978), and gives rise to the P-S in a complex gauge. 
Here we consider the k 2  = 0 (A  = 0) case. 

Differentiating (7,1', 2') with respect to the variable s (which moves along the 
t = constant curves) an inconsistency between the two equations arises. This inconsis- 
tency can be eliminated either by letting 

a = b  

or by letting 

(d /d t ) ( t - '6+t02)  = 0. (9) 

6 = i t [ f4(S)  - 02] 

The second possibility (9) leads to the solution 

(10) 

where f4(s) is an arbitrary function of integration. Substituting (10) into (7.1', 2') leads 
in both cases to 

(11) 

We are therefore forced to revert to the other possibility where a = b, which leads to 

O2U) = [(2n + b)/blf4(s) 
which means that both 0 and f4(s) are constants. This is a trivial solution. 

t = a ( p 2  + z 2)1'2 = ar. 

This proves that non-trivial (finite energy) solutions of the form (3) to the equations 
(2) must be spherically symmetric. 
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Under the circumstances, equations (7.1', 2 ')  reduce to 

r 6  + o + i r 2 @  = constant, 

which, in terms of x = rO, is 

X +$x2 = constant. 

x + g x 2  == 0 

This being a real equation, the constant is real, so 

' 1 2  x + ~ x  + i h 2 = 0  
+ 1 2  1 2 -  X + T X  - T A  -0 .  

Integrating (12a,b,c) we get, respectively: 

(i) x = 2/(r  + a )  

where a is an integration constant. The finite energy condition in this case 

i s  satisfied but the energy density 

is too singular to give a finite energy. This solution is not acceptable. 

(ii) x = -A tan $h(r + a )  

in which we shall set the constant a equal to zero, as it has no effect on the following 
conclusions. Again, we compute the covariant derivative of 4 

h cot hr --+- ( A  co th r - l / r ) -&l~  sin hr i-- r sin hr ( 1 3 b )  
A 

[r' sin hr 

which oscillates violently at spatial infinity. The energy density in this case is 

1 cot2Ar h 4  cothr  1 
4 sin Ar sin A r  r sin hr r 

Tr(Did)2 = -- ( 2 A 4 - r  +.4- 4h -?+T) 

which is in fact regular at the origin, however its integral with respect to the volume 
element 2 r r 2  dr is divergent, reflecting the fact that the finite energy condition is not 
satisfied, namely that (13b)  does not vanish at infinity. This solution too is unaccept- 
able. 

(iii) ,y = A  tanh $ h ( r + a )  (12c') 

which is the P-S, and 

1 
A coth A r  - -+ -7- 

r sinh h r  
D!4 = T , ~ Y (  h coth hr -- 6,, + -T-- sinh hr '1 r [rl sinh hr 

A 

which vanishes both for r + CO and r + 0, that is, it satisfies the finite energy condition 
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and its energy density is regular at the origin. Integrating the energy density 

1 cothhr ,coth2Ar A 4  
r r sinh’ Ar sinh2Ar sinh Ar Tr(Diq5)2 = 7 - 4 A  +2A -- +v 

one gets the result 4 ~ .  
Thus the only finite energy solution of equations (12a,b,c) is the P-S, except that 

these being Riccati equations, given a solution x l ,  the function xl(r)  + t,!-’(r) is also a 
solution provided that $ is given by 

* -XI*  = i. (15) 

A $  = cosh ;Ar(exp ( i A r )  + p cosh i Ar) (16) 

Substituting ( 1 2 ~ ‘ )  for x1 in (15)  we find 

where p is a constant of integration. This leads to the solution 

(17) 1 
V = zp. 

(1 + v )  exp($Ar) - v exp(-iAr) 
(1 + v )  exp($Ar)+ v exp(-$Ar)’ X =  

This solution satisfies the finite energy condition and in fact becomes identical with 
P-S at large r, but the energy density function corresponding to it is singular at the origin 
and gives infinite energy. 

Similarly, solutions generated in this way from (12a’,b’) also result in infinite energy 
and are therefore also unacceptable. 

In conclusion, we see that the only self-dual solutions of the form (3) are spherically 
symmetric, and that amongst these the only one with finite energy is the P-S solution. 
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